Energy balance at the OFWH:
Assign:
- h2 = Enthalpy of steam at 0.7 MPa
- h4 = Enthalpy of compressed liquid from Pump 1
- h5 = Enthalpy of saturated liquid at 0.7 MPa
y(h2) +(1 - y)h4 = h5
solve for y:
y = (h5 - h4)/(h2 - h4)
Find enthalpy values:
hf is listed in steam tables ->
- At 10 kPa (condenser pressure): hf = 191.81 kJ/kg
- At 0.7 MPa (feedwater heater pressure): hf = 697.1 kJ/kg
use steam table -> at T1 = 500C and P1 = 8 MPa ->
h1 = 3410.2 kJ/kgFind h2 (Enthalpy at 0.7 mPA):
Use:
- ηT=85%
- h2s = hg + ((s1 - sg)/(ssup - sg)
- h2 = h1 − ηT(h1 − h2s)
- hg = 2762.5
- sg = 6.8625
h2s = hg + ((s1 - sg)/(ssup - sg)
h2s = 2762.5 + ((6.6583 - 6.8625)/(7 - 6.8625)) x (2800 - 2762.5)
h2s = 2706.86
h2 = h1 − ηT(h1 − h2s)
h2 = 3410.2 − 0.85(3410.2 − 2706.86)
h2 = 2812.2 kJ/kg
Find h4 (Enthalpy after post 1): - vf = 0.001043 m³/kg
- wp = vf(P5 - P4)/ηp
- h4 = h3 + wp
h3 = hf(10 kPa)
h3 = 191.81 kJ/kg
wp = vf(P5 - P4)/ηp
wp = 0.7207/0.85 = 0.847
h4 = h3 + wp
h4 = 191.84 + 0.847
h4 = 192.66 kJ/kg
Find h5 (the liquid (saturated) at 0.7 MPa):
h5 = hf(0.7 MPa)
h5 = 697.1 kJ/kg
Find y:
y = (h5 - h4)/(h2 - h4)
y = (697.1 - 192.66)/(2812.2 - 192.66)
y = 0.1926 ->
19.26% (approximately)(Results may vary slightly due to interpolation and steam table values, but the exact answer will be close to the given approximate value)